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INTRODUCTION 
 

Two-dimensional (2D) material heterostructures offer novel and compelling electronic and 
optical properties.  Density functional theory (DFT) is often used to derive the electronic band 
structure of the 2D heterostructures from first principles as well as to validate experimental results.  
However, the implementation of DFT requires an in-depth understanding of the geometric properties 
of the system being analyzed.  The creation of a unit cell that accurately describes the system 
remains one of the largest challenges for DFT calculations.  As the unit cell size increases, 
computational requirements increase exponentially.  However, too small of a unit cell may fail to 
represent short- to mid-range order in the lattice.  Balancing these conflicting requirements of cost 
and accuracy is still one of the biggest barriers to implementing DFT calculations.  An algorithm to 
automatically optimize the process would greatly streamline the method of creating a unit cell.  While 
many methods have undoubtedly been created for matching lattice constants of dissimilar 
nanomaterials, very few are actually covered explicitly in literature.  To rectify this, and to ensure 
other researchers will not have to resolve this problem, this report will review the underlying 
geometry of popular 2D materials, draw comparisons to other common unit cells, then offer a 
solution which facilitates the creation of an optimal unit cell for any heterogeneous structure 
consisting of multiple layers of 2D and close-packed materials. 

 
 

TWO-DIMENSIONAL MATERIAL GEOMETRY AND ANALOGS WITH CLOSE-PACKED SYSTEMS 
 

  The vast majority of 2D materials currently under research focus, including graphene, 
graphane, silicine, germanane, and all transition metal dichalcogenides (TMDCs), form hexagonal 
planes (ref. 1).  These structures are all easily expressed using 60 deg monoclinic Bravais lattices 
where the rhombic sides of the Bravais lattices fit together to form hexagonal monolayers.  When 
metals are deposited as electrodes on top of these 2D layers, the face-centered cubic (fcc) or 
hexagonal close-packed (hcp) lattice structure of the metals can also be modeled as rhombic unit 
cells for consistency with the underlying stacked heterostructures.  The hcp structures are described 
using the primitive hexagonal lattice, with a = b ≠ c,  α = β = 90°, γ = 60° and two atoms, at (0,0,0) 
and (⅓,⅔,½).  We can also represent a fcc crystal using a rhombic unit cell by rotating the unit cell 
45 deg and making the close-packed plane the base of the unit cell, with a = b ≠ c,  α = β = 90°, γ = 

60 and four atoms, at (0,0,0), (½,½,0), (½,0, ½), and (0, ½,½).  As the primary difference between 
hcp and fcc structures lies in differing stacking sequences (ABAB and ABCABC, respectively), it 
makes sense that a fcc cell taken using the close-packed plane as the base is similar to the hcp unit 
cell but with one more layer added. 
 
 

MATCHING SYSTEM LATTICE VECTORS: AN OPTIMIZATION PROBLEM 
 
Now that we are able to express various crystal structures as hexagonal lattices with a 

rhombus base, we can address the core issue of matching differing lattices into a larger primitive 
cell.  In order for each of the materials in the system to repeat correctly, the overall system cell must 
be represented as a linear combination of each individual material’s unit cell (fig. 1). We define a 
supercell for each material with lattice constant 

          
     

     
          

 
where    is the lattice parameter for a given material, and    and    are integers representing the 
number of unit cells in each direction. We then seek the minimum value        such that it is equal for 

each material. By generating a value for        for each material in the system then minimizing the 
variance and magnitude, an amorphous geometric problem turns into a fairly simple optimization 
problem.   

(1) 
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Note: In this example,                    .                         . Purple spheres denote Mo, Green Se, 
and Yellow S. 

Figure 1 
Matching the system lattice vector for two different transition metal dichalcogenides (TMDs), MoSe2 

and MoS2 
 

  In order to solve the optimization problem, constraints are necessary.     and    must be 
integers, and the unit cell lattice parameters of  each material were allowed to vary by up to 1%, 
which significantly decreased the cell size while imposing minimal total strain in the structure.  A 
maximum value of 6 was set for    and   , as a larger system would prove extremely 
computationally expensive.  A minimum of 1 for    and 0 for    forces the system lattice parameter 
to have a non-zero value but allows for the smallest possible system.  For this work, a genetic 
algorithm was used to solve the optimization problem.  Genetic algorithms begin with a large 
population of potential solutions and then undergo an iterative process mimicking evolution.  Each 
solution is evaluated compared to a ‘fitness function’ that defines the end goal of the optimization 
problem.  For this problem, the fitness function minimized the variance in the vector of each 
individual material    .  Genetic algorithms converge quickly and, depending on the initial population, 
effectively find global minima.  Reference 2 provides an excellent primer on genetic algorithms. 

 
Komsa and Krasheninnikov (ref. 3) took a similar approach for optimizing the unit cell for a 

heterostructure of two-dimensional metal chalcogenides (TDMCs).  However, the method used in 
this report differs from theirs in a few key respects.  For example, in considering the bilayer 
heterostructure of TDMCs with one member of the bilayer being always MoS2 and the other varied 
between WS2, MoSe2, MoTe2, BN, or graphene, Komsa and Krasheninnikov fixed the lattice 
parameter of MoS2 and only allowed the second layer to strain.  We let both of the bilayers undergo 
a strain up to 1%, allowing us to more effectively find a minimum and to distribute the strain from the 
lattice mismatch among both layers of the heterostructure.  Additionally, while Komsa and 
Krasheninnikov chose the smallest unit cell with <1% strain, we used a weighting algorithm to 
choose a unit cell with near-optimal size and minimal strain. 
 
 

 
 
 
 



UNCLASSIFIED 

Approved for public release; distribution is unlimited. 

3 

GENERATING THE SYSTEM UNIT CELL 
 

The found values for       ,     and    allow us to generate the crystal lattice for each 
material.  The angle   between the system unit cell lattice vector and the material lattice vector is 
given by     

   α             
     

   
     

 

         
 ) .    (2) 

 
The periodicity of the material lattices makes generating the structure unit cell fairly straightforward.  
From the top left corner of the system unit cell, every atom in a given material repeats at every linear 
combination of moving    in the   direction and moving    in the   + 60° direction (fig. 2).   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Matching the system lattice vector to our two respective crystal lattices 

 
 

TRANSITION METAL DICHALCOGENIDES (TMDCS) WITH MISMATCHED LATTICE 
PARAMETERS 

 
A bilayer of MoS2 and MoSe2 was chosen as the first system to evaluate.  In the calculations, 

a relaxed MoSe2 layer has a lattice parameter of 3.28 Å and a relaxed MoS2 layer has a lattice 
parameter of 3.16 Å.  This genetic algorithm successfully matched the two layers, as shown in figure 
3.  We also used it to match a series of different TMDCs.  The results are summarized in table 1. The 

strain () in the individual layers as shown in table 1 is less than 1% for all the cases considered.  
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Figure 3 

The generated unit cell of a MoS2/MoSe2 heterostructure bilayer 
 

Table 1 
Multiple matched monolayers 

 
              Strained   [Å] (Un)Strained   [Å]      [°]       [Å] ε1 ε2 

MoS2/MoSe2 4 1 4 2 3.16 (3.28) 3.29  16.1 11.4 0.00% 0.30% 

MoS2/MoTe2 3 3 3 1 3.14 (3.55) 3.56  40.9 9.42 0.63% 0.28% 

MoS2/WS2 1 0 1 0 3.18 (3.21) 3.18  0 3.18 0.63% 0.93% 

MoS2/WSe2 4 1 4 2 3.18 (3.33) 3.31  16.1 11.48 0.63% 0.60% 

MoSe2/MoTe2 5 3 4 4 3.28 (3.55) 3.57  23.4 11.46 0.00% 0.56% 

MoSe2/WS2 4 2 3 4 3.31 (3.21) 3.18  13.9 11.46 0.90% 0.93% 

MoSe2/WSe2 1 0 1 0 3.31 (3.33) 3.31  0 3.3 0.90% 0.60% 

 
With the optimized unit cell in place, DFT calculations to calculate the band structure and 

projected density of states for the material can begin.  This simulation was run in SIESTA using the 
Perdew-Burke-Ernzerhof (PBE) functional for the exchange correlation contributions.  All ions were 
relaxed to less than 0.01 eV/Å.  The initial interlayer spacing was set to 12.5 Å, and then the 
structure was relaxed until reaching an energy minimum at a spacing of 6.4 Å.  An 8x8x1 Monkhorst-
Pack k-point mesh.  The basis set was double zeta polarized, and a mesh cutoff of 300 Rydberg was 
implemented.   
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DENSITY FUNCTIONAL THEORY RESULTS 
 

As figure 4 shows, the direct bandgap at the K point was calculated to be 1.49 eV. Previous 

DFT calculations (refs. 3 and 4) reported a value of 1.25 eV for the direct bandgap at the K point for 
the heterostructure.  The difference may be attributed to the fact that we have let both layers of the 
heterostructure to strain while Komsa and Krasheninnikov (ref. 3) allowed only one layer to stretch or 
compress. Interestingly, the direct bandgap of 1.49 eV in our studies is comparable to that of the 
individual layers (ref. 4).   Consistent with the previous DFT calculations, it can be observed in figure 
4 that the valance band maximum occurs at the   point of the Brillouin zone thereby rendering the 
minimum energy gap to be indirect.   The observed value of 1.15 eV for the indirect gap is 
comparable to that reported by Komsa and Krasheninnikov (ref. 3). 

.  
 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 
DFT calculation results of a WS2 and MoS2 heterostructure 

     

Figure 4 also shows the projected density of states for the stacked heterostructure.  The 
projected density of states shows that for            most of the contribution to the conduction band 
comes from the molybdenum atoms.  While the valence band contribution comes slightly more from 
the tungsten atoms than the molybdenum, the difference in contributions in the projected density of 
states is too small to make a meaningful conclusion about the exact nature of the valence band.  
However, the result suggests the interesting consequence of a type II band alignment of the 
heterostructure with the valence band maximum and conduction band minimum occurring in WS2 
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and MoS2 layers, respectively.  Thus, in an excitonic optical transition, the electron-hole pair will be 
spatially separated.  This will lead to interesting optical behavior of the heterostructure. 

 
 

CONCLUSIONS 
 

We have developed a genetic algorithm that allows us to rapidly optimize the unit cells for the 
calculation of the electronic band structures of heterostructures of two-dimensional (2D) 
nanomaterials.  We applied the method to calculate the band structure of 2D MoS2/WS2 
heterostructure, and our results are in good agreement with that of the earlier work of Komsa and 
Krasheninnikov. The flexibility of our method renders it applicable to any multilayer heterostructure 
where the individual layers can be expressed using rhombic unit cells.  There are plans to use this 
technique to simulate combinations of different transition metal dichalcogenides (TMDCs) so as to 
better understand how stacking changes the electronic and optical properties.  Further, this method 
will be used to model the electron transport in a heterostructure that uses other 2D materials as 
metal electrodes.    
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